
1

BEE 271 Digital circuits and systems
Spring 2017
Lab 3: Keypad scanner1

1 Objectives

In this lab, you will design and build a
keypad scanner and display as shown
in figure 1.

1. The display will use the 7-segment
decoder from lab 2.

2. The keypad is connected via the
GPIO (general purpose I/O)
connector.

3. The * (asterisk) key should mean
hex E and the # (pound sign) key
should mean hex F. All the other
keys should be as marked.

4. When a key is pressed, the new
digit should be displayed in the
rightmost 7-segment display. If
no key is being pressed, the
display should be blank.

5. A count of the cumulative number
of keystrokes should always be
displayed in the four leftmost 7-
segment displays with leading zero
suppression.

6. The remaining 7-segment display
should always be blank.

7. One of the pushbutton switches
should provide a reset function, blanking all the digits.

By the end of the lab, you should be comfortable designing, building and debugging a useful
clocked sequential circuit in Verilog and you will have learned how a classic problem of
working with mechanical switches is solved.

1 This lab was written by Nicole Hamilton.

Figure 1. When a key is pressed, it’s

displayed and the count is incremented

Figure 2. Keypad with pull-up resistors. The columns
are the inputs and the rows are the outputs.

Row0

Row1

Row2

Row3

Col0 Col1 Col2 Col3
25KΩ
pullups

3.3V

2

2 Work product

At the end of this lab, you must demo your design and submit your code as a .v or .vs file.
That is all you need to submit. You will not be writing a report.

3 Keypad scanning

It’s impractical to run even one wire per key to any large keyboard, so the standard solution
for decades has been to arrange the switches into columns and rows as shown in figure 2.
The coordinates for any given key are referred to as the scan code, which is then mapped to
the appropriate character code.

Using this technique, the number of wires required, nw, grows only with the square root of
the number of keys, nk, not linearly.

𝑛𝑛𝑤𝑤 = 2�𝑛𝑛𝑘𝑘

For a keypad with 16 keys, this
means we need only 8 wires, not
17 wires (one for each key + a
common wire.)

Each row pin has an internal
weak pull-up on the FPGA, a
resistor tied high to guarantee
the rows will normally be a logic
level 1, not floating, but with a
high enough value resistor that it
won’t take much current to pull
the row to 0. The on-chip weak
pull-ups are 25KΩ; from Ohm’s
Law we can calculate it will take
only 132 μA to pull a row to
ground.

𝐼𝐼 =
𝐸𝐸
𝑅𝑅

=
3.3 𝑉𝑉

25 𝐾𝐾Ω
= 132 µA

When a key is pressed, it connects a row wire to a column wire. By scanning the columns
very rapidly, pulling just one column at a time to 0 while putting Z’s (high impedance, like
it’s not connected) on all the other columns as shown in figure 3, we can quickly discover
any key that’s pressed because when we pull its column to 0, the row it’s connected to will
also go to 0.

 Columns driven as outputs from the FPGA
 Z 0 Z Z

Figure 3. A closed switch creates a path
to pull a row to 0 with only 132 μA.

Row0

Row1

Row2

Row3

Col0 Col1 Col2 Col3
25KΩ
pullups

3.3V

0

1

1

1

Rows read as inputs
with on-chip pullups

3

4 Procedure

In this lab, you’ll scan the keypad, identify when a key is pressed and display it. You’ll also
display a running count in hex of the number of key depressions of same key in a row.
What you’ll likely discover is that sometimes when you press a key, it works and the count
only goes up by only one as it should. But often the count jumps by 2 or 3 because the key
is bouncing.

In the next lab, you’ll add logic to debounce the keypad to ensure that if you press a key
once, you get exactly one key depression.

Here are the design steps you’ll follow.

1. Use the System Builder tool and Quartus Prime to create an empty Verilog project with
the necessary inputs and outputs.

2. Build a simple counter with the high bits connected to the LEDs and observe the
behavior.

3. Convert a two-bit number into a one-hot.

4. Plug the keypad into the GPIO-1 header.

5. Add internal pull-ups to the rows.

6. Add your seven segment decoder module.

7. Modify your counter so that it can scan the keypad, moving a single 0 across the
columns, stopping if any row goes to 0, outputting the character code corresponding to
the key that’s been pressed. Wire it up to one of the seven segment displays.

8. Add a 16-bit counter that’s incremented every time you get a new keystroke.

9. Add a reset function, tied to one of the pushbuttons on the DE1-SoC board.

10. Debug your design, demo it and submit your .v or .sv file.

4

4.1 System Builder

Use the System Builder tool
to create an empty
KeypadScanner project with
the appropriate inputs and
outputs as shown in figure
4.

4.2 Quartus Prime

Open the project in Quartus
Prime, add the
KeypadScanner.v source
file, open it for editing and
copy your 7-segment
decoder module into it.

4.3 A simple counter

The first step is verify that
you know how use CLOCK_50, the 50 MHz clock by building a simple counter that can divide
the clock down low enough that you can watch the output change on the LEDs.

Figure 5 shows a simple module that
increments a 32-bit counter with the high-
order 10 bits wired to the LEDs.

The always block in the example is entered on
the positive edge of the clock. (You can
choose any clock and either edge but stick
with whatever you choose throughout your
design.)

This is a clocked, not combinatorial logic. In
clocked logic, the intended next state, in this
case, the next value of the counter, is
calculated based on the current state and then
clocked (written) simultaneously into all the outputs at the clock edge.

Because this is intended as sequential clocked logic where the outputs should all change at
once, the assignments use the “<=” operator instead of the “=” operator used for
combinatorial logic. The right-hand side of each “<=” assignment is evaluated using the
values at entry to the always block. The actual assignment to the variable on the left is
deferred until after the end of the always block and is done simultaneously with all the
others.

Figure 4. The inputs and outputs you’ll need.

module Scan(input CLOCK_50,
 output [9:0] LEDR);

 reg [31:0] counter;

 assign LEDR = counter[31:22];

 always @(posedge CLOCK_50)
 counter <= counter + 1;

endmodule

Figure 5. A simple counter to start.

5

Never mix combinatorial “=” assignments with clocked “<=” assignments in the same always
block. If the always block is clocked sequential logic, use only the “<=” operator. If it’s
combinatorial, use only the “=” operator.

Instantiate a copy of this in your main module and compile and run this on your board.
What you should observe is the LEDs counting in binary, each LED blinking at half the
frequency of the one to its right.

With a 50 MHz clock, counter[0] will flip from 0 to 1, then back to 0 in two clocks, meaning
it will be running at 25 MHz, half the input clock. By extension, each bit k of the counter
will have a frequency and period as follows:

𝑓𝑓𝑘𝑘 =
50 𝑀𝑀𝑀𝑀𝑀𝑀

2𝑘𝑘+1

𝑇𝑇𝑘𝑘 =
1
𝑓𝑓𝑘𝑘

Thus, we’d expect LEDR[0] to blink at about 50e6/223 = 6 Hz. LEDR[9] should blink at
50e6/232 = .01 Hz (a period of 86 s.)

This should give you an idea of how you might choose two bits from your counter as your
column number. If you know the frequency you want, you can calculate which bit will flip
at that rate as follows:

𝑘𝑘 = log2 �
50 𝑀𝑀𝑀𝑀𝑀𝑀

𝑓𝑓𝑘𝑘
� − 1

4.4 Turn that into a one-hot

You then need to turn the two-bit
column number into a one-hot as
shown in figure 6. Your eventual
objective will be to scan from one
column to the next at perhaps 50
KHz to 100 KHz. But to make it
possible to watch things change on
the LEDs, we need something
slower, so let’s pick fk = 1 Hz, giving
k = 25.

In this second step, I’ve picked
counter[26:25] as the two-bit
column number and then translated
that to a one-hot output, wiring the
column number and the one-hot to
the LEDs.

module Scan(input CLOCK_50,
 output [9:0] LEDR);

 reg [31:0] counter;
 reg [3:0] onehot;
 wire [1:0] columnNumber;

 assign columnNumber = counter[26:25];
 assign LEDR = { onehot, columnNumber };

 always @(posedge CLOCK_50)
 counter <= counter + 1;

 always @(*)
 case (columnNumber)
 0: onehot = 'b1000;
 1: onehot = 'b0100;
 2: onehot = 'b0010;
 3: onehot = 'b0001;
 endcase

endmodule

Figure 6. A one-hot counter.

6

Compile and run this on
your board. What you
should observe is 4 LEDs
rotating a one hot
pattern and 2 LEDs counting 0
to 3 in binary, changing at a 1
Hz rate.

4.5 A more sophisticated
counter

The previous example did not
allow much fine-tuning of the
frequency. Figure 7 shows a
slightly more sophisticated
counter that allows the
frequency to be set to any
desired value, shown here as
1/3 Hz. Notice the use of
floating point in the calculation.

module Scan(input CLOCK_50,
 output [9:0] LEDR);

 reg [31:0] counter;
 reg [3:0] onehot;
 reg [1:0] columnNumber;

 parameter desiredFrequency = 1.0/3.0,
 divisor = 50_000_000 / desiredFrequency;

 assign LEDR = { onehot, columnNumber };

 always @(posedge CLOCK_50)
 if (counter == 0)
 begin
 counter <= divisor;
 columnNumber <= columnNumber + 1;
 case (columnNumber)
 0: onehot <= 4'b1000;
 1: onehot <= 4'b0100;
 2: onehot <= 4'b0010;
 3: onehot <= 4'b0001;
 endcase
 end
 else
 counter <= counter - 1;

endmodule

Figure 7. A more sophisticated counter.

7

4.6 Plug in the keypad

Plug the keypad into the
GPIO-1 with the leftmost pin,
Row[0], at GPIO[25] and
the rightmost, Col[3], at
GPIO[11], as shown in
figures 7 and 8.

4.7 Add internal pull-
ups

The next step is to enable the
internal weak pull-up resistors
on the rows. From the main
Quartus menu bar, go to
Assignments  Assignment
Editor.

Do not change any lines
already there but add the last
4 lines shown in figure 9, assigning weak pull-ups to GPIO
pins 19, 21, 23 and 25, corresponding to the rows on the
keypad.

Figure 8. GPIO pinout.
The notch is on the left.
Image source: Altera

Figure 7. Keypad pinout.

8

The result will be to add the following lines near the bottom of your .qsf (Quartus Settings
File) file. (If you prefer, you can simply edit the .qsf file directly to add these lines.)

set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[19]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[21]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[23]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[25]

4.8 Scan the keypad

Modify your Scan module to have the following inputs and outputs.

module Scan(input CLOCK_50, inout [7:0] keypad,
 output reg [3:0] rawKey, output reg rawValid);

Bits 7:4 of the keypad are the rows. Bits 3:0 are the columns. If a key is being pressed,
rawValid should equal 1 and rawKey should equal the character code (hex 0 through F) of
that key.

To hook this up to the GPIO pins, the instantiation in your main module should look
something like this. Notice how concatenation is used to collect the GPIO pins connected to
the keypad into an 8-bit vector to be passed to the scan module.

Figure 9. Adding weak pull-ups.

9

wire [3:0] rawKey;
wire rawValid;

Scan sc(CLOCK_50,
 { GPIO[25], GPIO[23], GPIO[21], GPIO[19],
 GPIO[17], GPIO[15], GPIO[13], GPIO[11] },
 rawKey, rawValid);

Modify the scan module so that scans until it finds a key that’s pressed, stays there so long
as the key remains pressed, and then starts scanning again if the key is released.

1. Modify your one-hot code to drive the selected column to 0 and the rest to z (high
impedance) rather than 1.

2. Pick a sensible rate for scanning across columns, somewhere between 50 and 100 KHz.

3. Increment the column number only if none of the rows is currently 0. (If we’ve found a
key that’s pressed, stay on that column.)

4. If a key is pressed, translate the row and column number coordinates into the
corresponding hex value as rawKey.

5. Wire the rawKey to the rightmost of the 7-segment displays (HEX0) but only display the
digit if rawValid = 1.

4.9 Add a counter

Add a 16-bit counter of the number of key depressions. Each time rawValid goes to a 1,
increment the counter. Display it as a hex number in the 4 leftmost 7-segment displays
with zero suppression of the three high-order digits. Add a reset function tied to the
leftmost button.

What you likely observe is that the keypad works only sometimes. Sometimes when you
press a key, the count goes up by only 1 as it should. But it sometimes goes up by 2 or 3
or maybe more because the key is bouncing.

5 Demo and submit

Demo your design and submit your code.

	1 Objectives
	2 Work product
	3 Keypad scanning
	4 Procedure
	4.1 System Builder
	4.2 Quartus Prime
	4.3 A simple counter
	4.4 Turn that into a one-hot
	4.5 A more sophisticated counter
	4.6 Plug in the keypad
	4.7 Add internal pull-ups
	4.8 Scan the keypad
	4.9 Add a counter

	5 Demo and submit

