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BEE 271  Digital circuits and systems 
Spring 2017 
Lab 3:  Keypad scanner1 

1 Objectives 

In this lab, you will design and build a 
keypad scanner and display as shown 
in figure 1. 

1. The display will use the 7-segment 
decoder from lab 2. 

2. The keypad is connected via the 
GPIO (general purpose I/O) 
connector. 

3. The * (asterisk) key should mean 
hex E and the # (pound sign) key 
should mean hex F.  All the other 
keys should be as marked. 

4. When a key is pressed, the new 
digit should be displayed in the 
rightmost 7-segment display.  If 
no key is being pressed, the 
display should be blank. 

5. A count of the cumulative number 
of keystrokes should always be 
displayed in the four leftmost 7-
segment displays with leading zero 
suppression. 

6. The remaining 7-segment display 
should always be blank. 

7. One of the pushbutton switches 
should provide a reset function, blanking all the digits. 

By the end of the lab, you should be comfortable designing, building and debugging a useful 
clocked sequential circuit in Verilog and you will have learned how a classic problem of 
working with mechanical switches is solved. 

                                           

1 This lab was written by Nicole Hamilton. 

 
Figure 1. When a key is pressed, it’s 

displayed and the count is incremented 

 

Figure 2. Keypad with pull-up resistors.  The columns 
are the inputs and the rows are the outputs. 
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2 Work product 

At the end of this lab, you must demo your design and submit your code as a .v or .vs file.  
That is all you need to submit.  You will not be writing a report. 

3 Keypad scanning                                                                                 

It’s impractical to run even one wire per key to any large keyboard, so the standard solution 
for decades has been to arrange the switches into columns and rows as shown in figure 2.  
The coordinates for any given key are referred to as the scan code, which is then mapped to 
the appropriate character code. 

Using this technique, the number of wires required, nw, grows only with the square root of 
the number of keys, nk, not linearly. 

𝑛𝑛𝑤𝑤 = 2�𝑛𝑛𝑘𝑘 

For a keypad with 16 keys, this 
means we need only 8 wires, not 
17 wires (one for each key + a 
common wire.) 

Each row pin has an internal 
weak pull-up on the FPGA, a 
resistor tied high to guarantee 
the rows will normally be a logic 
level 1, not floating, but with a 
high enough value resistor that it 
won’t take much current to pull 
the row to 0.  The on-chip weak 
pull-ups are 25KΩ; from Ohm’s 
Law we can calculate it will take 
only 132 μA to pull a row to 
ground. 

𝐼𝐼 =
𝐸𝐸
𝑅𝑅

=
3.3 𝑉𝑉

25 𝐾𝐾Ω
= 132 µA 

When a key is pressed, it connects a row wire to a column wire.  By scanning the columns 
very rapidly, pulling just one column at a time to 0 while putting Z’s (high impedance, like 
it’s not connected) on all the other columns as shown in figure 3, we can quickly discover 
any key that’s pressed because when we pull its column to 0, the row it’s connected to will 
also go to 0. 

  Columns driven as outputs from the FPGA 
  Z            0              Z            Z 

 

Figure 3. A closed switch creates a path 
to pull a row to 0 with only 132 μA. 
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4 Procedure 

In this lab, you’ll scan the keypad, identify when a key is pressed and display it.  You’ll also 
display a running count in hex of the number of key depressions of same key in a row.  
What you’ll likely discover is that sometimes when you press a key, it works and the count 
only goes up by only one as it should.  But often the count jumps by 2 or 3 because the key 
is bouncing. 

In the next lab, you’ll add logic to debounce the keypad to ensure that if you press a key 
once, you get exactly one key depression. 

Here are the design steps you’ll follow. 

1. Use the System Builder tool and Quartus Prime to create an empty Verilog project with 
the necessary inputs and outputs. 

2. Build a simple counter with the high bits connected to the LEDs and observe the 
behavior. 

3. Convert a two-bit number into a one-hot.  

4. Plug the keypad into the GPIO-1 header. 

5. Add internal pull-ups to the rows. 

6. Add your seven segment decoder module. 

7. Modify your counter so that it can scan the keypad, moving a single 0 across the 
columns, stopping if any row goes to 0, outputting the character code corresponding to 
the key that’s been pressed.  Wire it up to one of the seven segment displays. 

8. Add a 16-bit counter that’s incremented every time you get a new keystroke. 

9. Add a reset function, tied to one of the pushbuttons on the DE1-SoC board. 

10. Debug your design, demo it and submit your .v or .sv file. 
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4.1 System Builder 

Use the System Builder tool 
to create an empty 
KeypadScanner project with 
the appropriate inputs and 
outputs as shown in figure 
4. 

4.2 Quartus Prime 

Open the project in Quartus 
Prime, add the 
KeypadScanner.v source 
file,  open it for editing and 
copy your 7-segment 
decoder module into it. 

4.3 A simple counter 

The first step is verify that 
you know how use CLOCK_50, the 50 MHz clock by building a simple counter that can divide 
the clock down low enough that you can watch the output change on the LEDs. 

Figure 5 shows a simple module that 
increments a 32-bit counter with the high-
order 10 bits wired to the LEDs. 

The always block in the example is entered on 
the positive edge of the clock.  (You can 
choose any clock and either edge but stick 
with whatever you choose throughout your 
design.) 

This is a clocked, not combinatorial logic.  In 
clocked logic, the intended next state, in this 
case, the next value of the counter, is 
calculated based on the current state and then 
clocked (written) simultaneously into all the outputs at the clock edge. 

Because this is intended as sequential clocked logic where the outputs should all change at 
once, the assignments use the “<=” operator instead of the “=” operator used for 
combinatorial logic.  The right-hand side of each “<=” assignment is evaluated using the 
values at entry to the always block.  The actual assignment to the variable on the left is 
deferred until after the end of the always block and is done simultaneously with all the 
others. 

 
Figure 4.  The inputs and outputs you’ll need. 

module Scan( input CLOCK_50, 
      output [ 9:0 ] LEDR ); 
 
   reg [ 31:0 ] counter; 
 
   assign LEDR = counter[ 31:22 ]; 
 
   always @( posedge CLOCK_50 ) 
      counter <= counter + 1; 
 
endmodule 

Figure 5.  A simple counter to start. 
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Never mix combinatorial “=” assignments with clocked “<=” assignments in the same always 
block.  If the always block is clocked sequential logic, use only the “<=” operator.  If it’s 
combinatorial, use only the “=” operator. 

Instantiate a copy of this in your main module and compile and run this on your board.  
What you should observe is the LEDs counting in binary, each LED blinking at half the 
frequency of the one to its right. 

With a 50 MHz clock, counter[0] will flip from 0 to 1, then back to 0 in two clocks, meaning 
it will be running at 25 MHz, half the input clock.  By extension, each bit k of the counter 
will have a frequency and period as follows: 

𝑓𝑓𝑘𝑘 =  
50 𝑀𝑀𝑀𝑀𝑀𝑀

2𝑘𝑘+1
 

𝑇𝑇𝑘𝑘 =  
1
𝑓𝑓𝑘𝑘

 

Thus, we’d expect LEDR[0] to blink at about 50e6/223 = 6 Hz.  LEDR[9] should blink at 
50e6/232 = .01 Hz (a period of 86 s.) 

This should give you an idea of how you might choose two bits from your counter as your 
column number.   If you know the frequency you want, you can calculate which bit will flip 
at that rate as follows: 

𝑘𝑘 = log2 �
50 𝑀𝑀𝑀𝑀𝑀𝑀

𝑓𝑓𝑘𝑘
�  − 1  

4.4 Turn that into a one-hot 

You then need to turn the two-bit 
column number into a one-hot as 
shown in figure 6.  Your eventual 
objective will be to scan from one 
column to the next at perhaps 50 
KHz to 100 KHz.  But to make it 
possible to watch things change on 
the LEDs, we need something 
slower, so let’s pick fk = 1 Hz, giving 
k = 25. 

In this second step, I’ve picked 
counter[ 26:25 ] as the two-bit 
column number and then translated 
that to a one-hot output, wiring the 
column number and the one-hot to 
the LEDs. 

module Scan( input CLOCK_50, 
      output [ 9:0 ] LEDR ); 
 
   reg  [ 31:0 ] counter; 
   reg  [  3:0 ] onehot; 
   wire [  1:0 ] columnNumber; 
 
   assign columnNumber = counter[ 26:25 ]; 
   assign LEDR = { onehot, columnNumber }; 
 
   always @( posedge CLOCK_50 ) 
      counter <= counter + 1; 
 
   always @( * ) 
      case ( columnNumber ) 
         0: onehot = 'b1000; 
         1: onehot = 'b0100; 
         2: onehot = 'b0010; 
         3: onehot = 'b0001; 
      endcase 
 
endmodule 

Figure 6.  A one-hot counter. 
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Compile and run this on 
your board.  What you 
should observe is 4 LEDs 
rotating a one hot 
pattern and 2 LEDs counting 0 
to 3 in binary, changing at a 1 
Hz rate. 

4.5 A more sophisticated 
counter 

The previous example did not 
allow much fine-tuning of the 
frequency.  Figure 7 shows a 
slightly more sophisticated 
counter that allows the 
frequency to be set to any 
desired value, shown here as 
1/3 Hz.  Notice the use of 
floating point in the calculation. 

module Scan( input CLOCK_50, 
      output [ 9:0 ] LEDR ); 
 
   reg [ 31:0 ] counter; 
   reg [  3:0 ] onehot; 
   reg [  1:0 ] columnNumber; 
 
   parameter desiredFrequency = 1.0/3.0, 
      divisor = 50_000_000 / desiredFrequency; 
 
   assign LEDR = { onehot, columnNumber }; 
 
   always @( posedge CLOCK_50 ) 
      if ( counter == 0 ) 
         begin 
         counter <= divisor; 
         columnNumber <= columnNumber + 1; 
         case ( columnNumber ) 
            0: onehot <= 4'b1000; 
            1: onehot <= 4'b0100; 
            2: onehot <= 4'b0010; 
            3: onehot <= 4'b0001; 
         endcase 
         end 
      else 
         counter <= counter - 1; 
 
endmodule 

Figure 7.  A more sophisticated counter. 
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4.6 Plug in the keypad 

Plug the keypad into the 
GPIO-1 with the leftmost pin, 
Row[ 0 ], at GPIO[ 25 ] and 
the rightmost, Col[ 3 ], at 
GPIO[ 11 ], as shown in 
figures 7 and 8. 

 

4.7 Add internal pull-
ups 

The next step is to enable the 
internal weak pull-up resistors 
on the rows.  From the main 
Quartus menu bar, go to 
Assignments  Assignment 
Editor. 

Do not change any lines 
already there but add the last 
4 lines shown in figure 9, assigning weak pull-ups to GPIO 
pins 19, 21, 23 and 25, corresponding to the rows on the 
keypad. 

 

Figure 8.  GPIO pinout. 
The notch is on the left. 
Image source: Altera 

 
Figure 7.  Keypad pinout. 
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The result will be to add the following lines near the bottom of your .qsf (Quartus Settings 
File) file.  (If you prefer, you can simply edit the .qsf file directly to add these lines.) 

set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[19] 
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[21] 
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[23] 
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO[25] 

4.8 Scan the keypad 

Modify your Scan module to have the following inputs and outputs. 

module Scan( input CLOCK_50, inout [ 7:0 ] keypad, 
      output reg [ 3:0 ] rawKey, output reg rawValid ); 

Bits 7:4 of the keypad are the rows.  Bits 3:0 are the columns.  If a key is being pressed, 
rawValid should equal 1 and rawKey should equal the character code (hex 0 through F) of 
that key. 

To hook this up to the GPIO pins, the instantiation in your main module should look 
something like this.   Notice how concatenation is used to collect the GPIO pins connected to 
the keypad into an 8-bit vector to be passed to the scan module. 

 
Figure 9.  Adding weak pull-ups. 
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wire [ 3:0 ] rawKey; 
wire rawValid; 

Scan sc( CLOCK_50, 
   { GPIO[ 25 ], GPIO[ 23 ], GPIO[ 21 ], GPIO[ 19 ], 
   GPIO[ 17 ], GPIO[ 15 ], GPIO[ 13 ], GPIO[ 11 ] }, 
   rawKey, rawValid ); 

Modify the scan module so that scans until it finds a key that’s pressed, stays there so long 
as the key remains pressed, and then starts scanning again if the key is released. 

1. Modify your one-hot code to drive the selected column to 0 and the rest to z (high 
impedance) rather than 1.  

2. Pick a sensible rate for scanning across columns, somewhere between 50 and 100 KHz. 

3. Increment the column number only if none of the rows is currently 0.  (If we’ve found a 
key that’s pressed, stay on that column.) 

4. If a key is pressed, translate the row and column number coordinates into the 
corresponding hex value as rawKey. 

5. Wire the rawKey to the rightmost of the 7-segment displays (HEX0) but only display the 
digit if rawValid = 1. 

4.9 Add a counter 

Add a 16-bit counter of the number of key depressions.  Each time rawValid goes to a 1, 
increment the counter.  Display it as a hex number in the 4 leftmost 7-segment displays 
with zero suppression of the three high-order digits.  Add a reset function tied to the 
leftmost button. 

What you likely observe is that the keypad works only sometimes.  Sometimes when you 
press a key, the count goes up by only 1 as it should.  But it sometimes goes up by 2 or 3 
or maybe more because the key is bouncing. 

5 Demo and submit 

Demo your design and submit your code. 
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